Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations

Oscar Bruno, Tim Elling, Randy Paffenroth, Catalin Turc
bruno@acm.caltech.edu, lemming@acm.caltech.edu, redrod@acm.caltech.edu, turc@acm.caltech.edu

Abstract
We present a new class of integral equations for the solution of problems of scattering of electromagnetic fields by perfectly conducting bodies. Like the classical Combined Field Integral Equation (CFIE) our equations result from representations of the scattered fields as a combination of magnetic- and electric-dipole distributions on the surface of the scatterer. In contrast with the classical equations, however, our electric-dipole operators involve use of certain types of regularizing operators; we call the resulting equations Regularized Combined Field Integral Equations (CFIE-R). Unlike the CFIE, the CFIE-R are Fredholm equations which, we show, are uniquely solvable; our selection of coupling parameters, further, yields CFIE-R operators with excellent spectral distributions—with closely clustered eigenvalues—so that small numbers of iterations suffice to solve the corresponding equations by means of Krylov subspace iterative solvers such as GMRES. The regularizing operators are constructed on the basis of the single layer operator, and can thus be incorporated easily within any existing surface integral equation implementation for the solution of the classical CFIE. We present one such methodology: a high-order Nyström approach based on use of partitions of unity and trapezoidal-rule integration. A variety of numerical results demonstrate very significant gains in computational costs that can result from the new formulations, for a given accuracy, over those arising from previous approaches.

Keywords: electromagnetic scattering, Combined Field Integral Equations, pseudodifferential operators, regularizing operator.

1 Introduction
The boundary integral formulations of computational electromagnetics enjoy a number of excellent properties; most notably, they require much smaller discretizations, for a given accuracy, than the three-dimensional discretizations implicit in finite-element or finite-difference approximations of the associated Maxwell equations. Although, in contrast with the differential approaches, integral equations do not give rise to sparse systems of linear equations, the smaller-sized two-dimensional integral-equation discretizations can be exploited through use of fast solvers [11, 7, 38, 34]—which, when applicable, can outperform their PDE-approximating counterparts to very significant extents. The computing times required by such fast algorithms, which generally utilize iterative Krylov-subspace-based linear algebra solvers such as GMRES [36], grows linearly, of course, with the numbers of linear algebra Krylov-subspace iterations they require to reach a given error tolerance. In this paper we present a new class of integral equations, that are of Fredholm type and uniquely solvable for all wavenumbers, which evaluate the scattering of electromagnetic waves by perfectly conducting bodies in small numbers of Krylov iterations. A variety of numerical results demonstrate very significant gains in computational costs that can result from the new formulations, for a given accuracy, over those arising from previous approaches.
As suggested above, the number of iterations required by an integral-equation iterative solver to reach a given error tolerance depends on the integral equation used. Consider first the classical Magnetic Field Integral Equation (MFIE) and Electric Field Integral Equation (EFIE) for perfectly conducting scatterers [27, 30, 16], which are uniquely solvable except for an (infinite) discrete set of wavenumbers: the values of the wavenumbers for which the unique solvability is lost coincide with resonant frequencies of the interior Maxwell equations. The existence of such resonances impacts negatively on the numbers of Krylov iterations required by these integral equations for frequencies close to resonance—and, certainly, at resonance both iterative and non-iterative solvers fail to produce the correct, uniquely determined solutions of Maxwell’s equations. The best-known approach to address this issue is based on expressing the electromagnetic fields as a superposition of magnetic and electric dipole distributions, thus combining the MFIE with “n × EFIE”, see Section 2; the resulting integral equation formulations are referred to as the Combined Field Integral Equations (CFIE) [23, 16]. The CFIE is uniquely solvable for every wavenumber, yet, as discussed below, it generally requires large numbers of GMRES iterations for convergence.

(An alternative approach to overcome the difficulties arising from non-uniqueness of MFIE solutions, introduced in [24, 41], is based on a concept of dual surfaces. Using an artificial interior surface in addition to the actual scattering surface, the dual MFIE integral penalizes the contribution of the eigenmodes corresponding to the resonant frequencies and renders a uniquely solvable integral equation formulation. According to our experience, however, this equation requires large numbers of iterations—as also does the MFIE even far from resonance; see also comments [28] concerning a certain residual ill conditioning in dual-surface equations.)

As mentioned above, certain characteristics of the uniquely solvable, non-resonant CFIE do influence adversely the iteration counts required by CFIE/GMRES solvers. Indeed, the EFIE operator, which is a portion of the CFIE, is a pseudodifferential operator of order 1—that is, asymptotically, the action of the operator in Fourier space (the highest order asymptotics of which can be uniquely defined by means of local parametrizations and windowed Fourier transforms [39, 37]) amounts to multiplication by the Fourier-transform variable. Consistent with this fact, the eigenvalues of these operators accumulate at infinity, which causes CFIE/GMRES algorithms to require large iteration numbers for convergence to a given residual.

A number of approaches have been put forward to remedy the difficulties arising from use of CFIE-based iterative solvers, including, most notably, algebraic preconditioners and analytical regularizers. Algebraic preconditioners, typically involving sparse approximate inverses (see e.g. [13] and references therein), do not exploit the fine structure of the Maxwell equations and the associated integral operators, and, in fact, they do not reduce the numbers of iterations to the extent that might be desirable. Analytical regularizers, in turn, take into account certain subtle properties of the operators underlying the CFIE formulation. An example of such a regularizer is the EFIE operator itself—as it results from the well known Calderón’s identities [25], the EFIE operator composed with itself equals the identity plus a compact operator. For smooth closed surfaces this is the actual choice of the regularizer in [19, 2, 20]; note that the aforementioned EFIE resonances and non-uniqueness are not eliminated by this approach. The approach presented in [20] combines the MFIE with a composition of two EFIE operators for different wave-numbers, one real and one imaginary. Like the CFIE, this coupling appears to overcome the existence of resonant frequencies, although a proof of this fact has not been given as yet. This method was shown to stabilize the number of iterations for simple geometries in the regime of very low frequencies. (Note that the MFIE is itself perfectly suitable in the low frequency regime.) No comments were made in [20] with regards to the behavior of these equations in the more challenging higher-frequency context. Our
own experiments in these regards show that, for a given GMRES residual, the latter formulation results in reductions in the numbers of GMRES iterations from those required by the CFIE, but that, still, it requires significantly higher iteration counts than those required by the methods proposed in this text. Considering the fact that, in addition, one matrix-vector product in the overall method [20] is about 1.5 times more expensive than the present counterpart (2.5 times as expensive as the CFIE, while the present approach is only about 1.6 times as expensive as the CFIE), the approach proposed in this text can lead to significantly faster numerics (and, as it happens, considerably higher accuracy for a given dicretization) than the approach [20].

A different type of regularizing operators proposed recently [1, 8, 3] rely on use of approximate high-frequency inverses of the electric field operator; a related approach in the context of acoustic scattering was proposed in [4]. Since the electric field integral operator has different pseudodifferential orders on the spaces of surface gradients and surface rotationals [28], these approaches require decompositions into gradients and rotationals that can be effected at the level of individual elements. Some issues need to be carefully addressed to carry this program to successful completion since, as is known [8], at the discrete level the range of the high-frequency approximations of the admittance operator is not contained within the domain of the electric field integral operator. The approach advocated in [8, 3] to remedy this situation calls for use of appropriate projections onto the domain of the electric field operator. These projections can be carried out either via Gram-Schmidt orthogonalizations, which leads to large computational costs [8], or, more efficiently [3], using the numerical fluxes available in the relevant lowest-order finite element space (known variedly as Raviart-Thomas, RWG and Nédélec edge elements [29, 32, 31]).

In all, these regularizers provide beneficial effects on iteration numbers, at least in the finite element context, and for elements of the lowest order. Yet, neither theoretical nor numerical studies of the effect of these projections on the overall error of the solutions have been published—indeed, none of the references [1, 8, 3, 19] contain a quantitative account of the errors resulting from the methodologies proposed for either simple or complex geometries. Efficient generalizations of these ideas to higher-order contexts, further, do not seem straightforward. In contrast, the globally defined regularizers introduced in this text are directly amenable to a high-order treatment in the framework of Nyström methods [10]; a variety of numerical results presented in Section 5 attests the high accuracy of the proposed methodology.

The numerical implementation we present of the new regularized equations is a generalization of the Nyström type approach introduced in [10]: we use overlapping partitions of unity and analytical resolution of kernel singularities to evaluate accurately the integral operators. In particular, the extension we present of that approach is capable to treat with high order accuracy both the hypersingular integrals involved in the electric integral operator as well the differential operators involved in the electromagnetic integral equations. We present numerical results for various test geometries; in all cases our algorithm exhibits high-order convergence.

In view of the reduced additional per-iteration costs inherent in the regularization process we propose, the significant reductions in numbers of iterations they produce, and the high-order accuracies of the corresponding implementations, the new regularized combined field integral equations are highly attractive alternatives to other available formulations, including the classical CFIE as well as improved versions these equations introduced in recent times. An application of the methodologies introduced here to the high-frequency regime requires use of some sort of acceleration technique; an implementation based on a generalization of the equivalent-source acceleration techniques [10] to the new integral equations is underway [12].

This paper is organized as follows: after discussing various classical integral equation formu-
lations in Section 2, in Section 3 we introduce our regularized combined field integral equations. Our high-order numerical implementation of these equations is described in Section 4. In Section 5, finally, we present a variety of numerical results produced by these implementations for low-to-medium frequencies.

2 Combined Field Integral Equations

We consider the problem of evaluating the scattered electromagnetic field \((E^s, H^s)\) that results as an incident field \((E^i, H^i)\) impinges upon the boundary \(\Gamma\) of a perfectly conducting scatterer \(D\). Defining the total field by \((E, H) = (E^s + E^i, H^s + H^i)\), the scattered field is determined uniquely by the Maxwell equations

\[
curl E - ikH = 0, \quad curl H + ikE = 0 \quad \text{in } \mathbb{R}^3 \setminus D
\]

(1)

together with the perfect-conductor boundary conditions

\[
n \times E = 0 \quad \text{on } \Gamma
\]

(2)

and the well known conditions of radiation at infinity on \((E^s, H^s)\).

2.1 Direct and Indirect EFIE, MFIE and CFIE formulations

A variety of integral equations for this problem exist, including those arising from the direct method stemming from the Stratton-Chu representation formulas [17], that express the scattered fields in terms of the physical surface current, as well as those arising from the indirect method, which result from use of an integral representation based on a non-physical surface density, as discussed in [25]. As is well known, not all possible integral equation formulations for the Maxwell equations are uniquely solvable for all values of the wavenumbers \(k\): the integral operators underlying some of these equations are not invertible for the values of \(k\) that coincide with the eigenvalues of the interior Maxwell problem in \(D\). This is indeed the case for two of the best known such integral equations: the Magnetic Field Integral Equation (MFIE) and the Electric Field Integral Equation (EFIE) [25]; any numerical method based solely on one of these equations will fail to produce a correct approximate solution at and around the resonant frequencies.

The classical approach to overcome this difficulty is based on lumping the MFIE and EFIE formulations into the Combined Field Integral Equation (CFIE), as originally proposed by Harrington and Mautz [23]. As mentioned above, an alternative to the classical direct EFIE, CFIE and MFIE equations, all of which are based on use of the Stratton-Chu formulas, a solution to the Maxwell equations can be sought [16] as the electromagnetic field of a combined magnetic and electric dipole distribution, giving rise to an indirect Combined Field Integral Equation. The direct and indirect combined field equations are uniquely solvable throughout the electromagnetic spectrum, and can thus be utilized as a basis for numerical methods for scattering problems. With the advent of fast algorithms based on iterative linear algebra solvers [36], however, a difficulty inherent in in the CFIE formulations became apparent: iterative solvers based on the CFIE require large numbers of iterations; see Section 5.

In detail, the direct methods use the Stratton-Chu formulas to express the electric and magnetic fields in terms of the physical current \(J = n \times H\) on \(\Gamma\), leading [30] to the classical MFIE

\[
\frac{J}{2} + KJ = n \times H^i
\]

(3)
and EFIE

\[\mathcal{T}\mathbf{J} = -\mathbf{n} \times \mathbf{E}' \]

(4)

Here the operators \(\mathcal{K} \) and \(\mathcal{T} \), which map tangential fields \(\mathbf{a} \) into tangential fields, are defined by

\[(\mathcal{K}\mathbf{a})(x) = \mathbf{n}(x) \times \int_{\Gamma} \nabla_y G_k(x - y) \times \mathbf{a}(y) d\sigma(y), \]

(5)

and

\[
\begin{align*}
(\mathcal{T}\mathbf{a})(x) &= i\kappa \mathbf{n}(x) \times \int_{\Gamma} G_k(x - y) \mathbf{a}(y) d\sigma(y) \\
&\quad + \frac{i}{k} \mathbf{n}(x) \times \text{PV} \int_{\Gamma} \nabla_x G_k(x - y) \text{div} \mathbf{a}(y) d\sigma(y) \\
&= (i\kappa \mathbf{n} \times \mathbf{S}_k + \frac{i}{k} \mathcal{T}_{11} \text{div} \mathbf{a}),
\end{align*}
\]

(6)

where \(G_k \) is the outgoing fundamental solution of the Helmholtz equation, \(G_k(x, y) = G_k(x - y) = \frac{e^{ik|x-y|}}{4\pi|x-y|} \); the hyper-singular integral in the definition of \(\mathcal{K} \) should be interpreted in the sense of Cauchy principal value.

The indirect methods, on the other hand, express the scattered electric field in the form of either a magnetic dipole distribution corresponding to a tangential density \(\mathbf{m} \)

\[\mathbf{E}(x) = (\mathcal{M}\mathbf{m})(x) = \text{curl} \int_{\Gamma} G_k(x - y) \mathbf{m}(y) d\sigma(y) \]

(7)

or an electric dipole distribution corresponding to the tangential density \(\mathbf{e} \)

\[\mathbf{E}(x) = (\mathcal{E}\mathbf{e})(x) = \text{curl} \text{curl} \int_{\Gamma} G_k(x - y) \mathbf{e}(y) d\sigma(y) \]

(8)

while the scattered magnetic field is given by \(\mathbf{H}(x) = \frac{1}{ik} \text{curl} \mathbf{E}(x) \). Classical continuity properties of vector potentials yield the Indirect Magnetic Field Integral Equation (IMFIE)

\[\frac{\mathbf{m}}{2} - \mathcal{K}\mathbf{m} = \mathbf{n} \times \mathbf{E}' \]

(9)

and the Indirect Electric Field Integral Equation (IEFIE)

\[ik\mathcal{T}\mathbf{e} = \mathbf{n} \times \mathbf{E}'. \]

(10)

The integral equation formulations EFIE (4) and IEFIE (10) differ only by a multiplicative constant and IMFIE (9) and MFIE (3) share the same spurious resonances, as the spectrum of the integral operator \(\mathcal{K} \) is symmetric with respect to the origin \([25]\); thus, from the point of view of iterative solvers the direct and indirect formulations have essentially identical behavior.

The uniquely solvable CFIE \([23]\) is given by a combination of the MFIE and EFIE of the form

\[\frac{J}{2} + \mathcal{K}\mathbf{J} + \eta_l (\mathbf{n} \times \mathcal{T})(\mathbf{J}) = \mathbf{n} \times \mathbf{H}' - \eta_l \mathbf{n} \times (\mathbf{n} \times \mathbf{E}'). \]

(11)
with a positive coupling constant \(\eta_1 \). The corresponding indirect combined field integral equation (ICFIE), on the other hand, assumes a representation of the type

\[
E(x) = (Ma + \eta_2 E(n \times a))(x) = \text{curl} \int_{\Gamma} G_k(x - y)a(y)d\sigma(y) + \eta_2 \text{curl curl} \int_{\Gamma} G_k(x - y)(n(y) \times a(y))d\sigma(y),
\]

\[\text{H}(x) = \frac{1}{ik} \text{curl } E(x), \quad x \in \mathbb{R}^3 \setminus D,\]

with a positive coupling parameter \(\eta_2 \), where \(a \) is a vector field tangent to \(\Gamma \). The electromagnetic field just introduced is an outgoing solution to the Maxwell equations with perfectly conducting boundary conditions provided the tangential density \(a \) is a solution to the integral equation

\[
\frac{a}{2} + \mathcal{K}a + \eta_2 kT(n \times a) = -n \times E^i. \tag{14}
\]

Standard arguments based on integration by parts show that the integral equation (14) is uniquely solvable for all \(\eta_2 > 0 \) \cite{16}.

3 Regularized Combined Field Integral Equations (CFIE-R)

We will introduce our regularizing operators \(n \times \mathcal{R} \) in terms of single layer operators with complex wavenumbers. This choice is shown to give rise to regularized equations which, as illustrated in Section 5, require small numbers of GMRES iterations.

3.1 Generalities

We seek representations of the electromagnetic fields of the form

\[
E^s(x) = \text{curl} \int_{\Gamma} G_k(x - y)a(y)d\sigma(y) + i\xi \text{curl} \int_{\Gamma} G_k(x - y)(n(y) \times (\mathcal{R}a)(y))d\sigma(y),
\]

\[H^s(x) = \frac{1}{ik} \text{curl } E(x), \quad x \in \mathbb{R}^3 \setminus D,\]

where \(\xi > 0 \), and where \(\mathcal{R} \) denotes an operator such that, modulo a compact operator, the composition of \(\mathcal{T} \) and \(n \times \mathcal{R} \) plus \(I/2 \) is a bounded invertible operator with a bounded inverse; we call \(n \times \mathcal{R} \) a right regularizer for the CFIE. Just as it is the case for the representations considered in Section 2, equations (15) and (16) define outgoing solutions to the Maxwell equations with perfect-conductor boundary conditions provided the tangential density \(a \) is a solution to the integral equation

\[
\frac{a}{2} - \mathcal{K}a + \eta_2 kT(n \times a) = -n \times E^i. \tag{17}
\]

this equation will be referred in what follows as the Indirect Regularized Combined Field Integral Equation (ICFIE-R). If \(n \times \mathcal{R} \) is chosen as a right regularizing operator for \(\mathcal{T} \), the integral operator on the left hand side of (17) is a Fredholm operator, and, thus, the unique solvability of equation (17) is equivalent to the injectivity of the left-hand-side operator. This operator is injective provided
\mathcal{R} is coercive—a condition which, at least for the spherical scattering surface, can be guaranteed by using certain imaginary wavenumbers in our construction of the operators \mathcal{R}.

If, in turn, $\mathbf{n} \times \mathcal{R}$ is a left regularizing operator for \mathcal{T}, a Direct Regularized Combined Field Integral Equation (DCFIE-R) can be obtained by combining the MFIE (3) with the composition of $\mathbf{n} \times \mathcal{R}$ and the EFIE (4):

$$\frac{J}{2} - \mathcal{K} J + \xi k (\mathbf{n} \times \mathcal{R}) \circ \mathcal{T} \mathbf{J} = \mathbf{n} \times \mathbf{H}^i - \xi k (\mathbf{n} \times \mathcal{R})(\mathbf{n} \times \mathbf{E}^i). \quad (18)$$

Before considering the actual construction of the operators \mathcal{R}, it is useful to note that a classical regularizing operator for \mathcal{T} is provided for smooth closed surfaces by the operator \mathcal{T} itself, as it follows from Calderón projection formulas [15, 25]

$$\mathcal{T}^2 = -\frac{\mathcal{I}}{4} + \mathcal{K}^2 \quad (19)$$

together with the fact that the operator \mathcal{K} is compact. This choice of a regularizing operator for \mathcal{T} is at the heart of the efforts in [2, 1, 19, 20]. Although certain simplifications can be taken into account to obtain as efficient numerical evaluations of the operator \mathcal{T}^2 as possible (which relate to the fact that the second term in the definition (6) of \mathcal{T} composed with itself yields zero), the work required to evaluate the composition \mathcal{T}^2 is still comparable to double the work required to evaluate \mathcal{T} alone, as this evaluation is dominated by the evaluation of the second term in (6).

In our construction, in contrast, the evaluation of the regularizing operator entails an effort comparable to the significantly less expensive evaluation of the first term in the definition (6). Additionally, as mentioned in the introduction, the freedom of parameters in our formulation allows one to select regularizing operators leading to significantly smaller numbers of iterations than those arising from regularizations considered previously.

We will choose regularizing operators of the form

$$\mathcal{R} = \mathcal{S}_K. \quad (20)$$

for general surfaces Γ.

Remark 3.1 Note that, for certain values of K, the regularizing operator $\mathcal{R} = \mathcal{S}_K$ (20) does not make the integral equations (17) uniquely solvable [25]. As shown in what follows, however, the unique solvability property is retrieved if the “wavenumber” K is chosen to equal ik_1, and arbitrary constants $k_1 \geq 0$ and $\xi > 0$ are used.

In what follows we denote the regularized indirect operator by

$$\text{ICFIE-R}_K = \frac{I}{2} + \mathcal{K} + \xi k \mathcal{T}(\mathbf{n} \times \mathcal{S}_K); \quad (21)$$

for the corresponding direct regularized operator, in turn, we will use the notation

$$\text{DCFIE-R}_K = \frac{I}{2} - \mathcal{K} + \xi k (\mathbf{n} \times \mathcal{S}_K) \circ \mathcal{T}. \quad (22)$$
Existence and uniqueness. We will prove that for general closed and smooth manifolds Γ and the choice of regularizing operator (20), the composition $T \circ S_K$ can be represented as a compact perturbation of an invertible diagonal matrix operator. The main idea in the proof is to use the regularity properties of integral operators with pseudo-homogeneous kernels [37] in the context of the suitable Sobolev spaces $H^{m-\frac{3}{2}}_\text{div}(\Gamma)$ of $H^{m-\frac{1}{2}}$ vector fields that admit an $H^{m-\frac{1}{2}}$ divergence [25].

In what follows we use the notations and relations [28, 39]:

$$\begin{align*}
\vec{\text{curl}}_\Gamma \mathbf{a} &= \nabla_\Gamma \mathbf{a} \times \mathbf{n} \\
\text{curl}_\Gamma \mathbf{a} &= \text{div}_\Gamma (\mathbf{a} \times \mathbf{n}) \\
\Delta_\Gamma \phi &= \text{div}_\Gamma \nabla_\Gamma \phi = -\text{curl}_\Gamma \text{curl}_\Gamma \phi
\end{align*}$$

where \mathbf{a} is a tangential vector field and where ϕ is a scalar function defined on Γ. A few relevant properties of the Helmholtz decomposition in Sobolev spaces are mentioned in the following Remark.

Remark 3.2 Let Γ be a smooth surface. For a given tangential vector field $\mathbf{a} \in H^{m-1/2}_\text{div}(\Gamma)$ we have the Helmholtz decomposition [25, 28]

$$\mathbf{a} = \nabla_\Gamma \phi + \vec{\text{curl}}_\Gamma \psi + \omega,$$

where ω is a harmonic vector field (i.e., its divergence and curl vanish), and where, using the right-inverse [39] $\Delta^{-1}_\Gamma : H^s(\Gamma) \to H^{s+2}(\Gamma)$ of the Laplace-Beltrami operator Δ_Γ, the functions ϕ and ψ in the Helmholtz decomposition (26) are given by $\phi = \Delta^{-1}_\Gamma \text{div}_\Gamma \mathbf{a}$ and $\psi = -\Delta^{-1}_\Gamma \text{curl}_\Gamma \mathbf{a}$. (Note that for simply connected surfaces Γ we necessarily have $\omega = 0$.) Clearly for a tangential vector field $\mathbf{a} \in H^{m-1/2}_\text{div}(\Gamma)$ we have $\phi \in H^{m+3/2}(\Gamma)$ and $\psi \in H^{m+1/2}(\Gamma)$ [25]; the corresponding projection operators onto the spaces of gradients, rotationals and harmonic fields will be denoted by

$$\begin{align*}
\Pi_{\nabla_\Gamma} &= \nabla_\Gamma \Delta^{-1}_\Gamma \text{div}_\Gamma : H^{m-1/2}_\text{div}(\Gamma) \to H^{m+1/2}_\text{div}(\Gamma), \\
\Pi_{\vec{\text{curl}}_\Gamma} &= \vec{\text{curl}}_\Gamma \Delta^{-1}_\Gamma \text{curl}_\Gamma : H^{m-1/2}_\text{div}(\Gamma) \to H^{m-1/2}_\text{div}(\Gamma), \quad \text{and} \\
\Pi_{\nabla_\Gamma \cap \vec{\text{curl}}_\Gamma} &= I - \Pi_{\nabla_\Gamma} - \Pi_{\vec{\text{curl}}_\Gamma} : H^{m-1/2}_\text{div}(\Gamma) \to H^{m-1/2}_\text{div}(\Gamma).
\end{align*}$$

We are now ready to state and prove our main result. Using the notation $A \sim B$ for two operators A and B that differ by a compact operator from $H^{m-\frac{3}{2}}_\text{div}(\Gamma)$, we have

Theorem 3.3 Let $\mathcal{R} = S_K$. Then the operator on the left-hand side of equation (17) satisfies

$$I + \mathcal{K} + \xi kT \circ (\mathbf{n} \times S_K) \sim \frac{1}{2} \Pi_{\nabla_\Gamma} + \left(\frac{1}{2} + \frac{i\xi}{4} \right) \Pi_{\vec{\text{curl}}_\Gamma} + \left(\frac{1}{2} + \frac{i\xi}{4} \right) \Pi_{\nabla_\Gamma \cap \vec{\text{curl}}_\Gamma}.$$

Further, for $K = ik_1$, $k_1 \geq 0$, and $\xi > 0$, equation (17) admits one and only one solution in the space $H^{m-\frac{3}{2}}_\text{div}(\Gamma)$ for any integer $m \geq 0$.

Proof. We first study the electric field integral operator T defined in equation (6). As is well known, denoting by $H^s(TM(\Gamma))$ the classical Sobolev space of tangential vector fields [28], we have [25, 28]

$$\mathbf{n} \times S_K : H^s(TM(\Gamma)) \to H^{s+1}(TM(\Gamma))$$

(31)
and thus, in view of either [16, p. 51] or [28]

\[T_{11} : H^s(TM(\Gamma)) \rightarrow H^s(TM(\Gamma)). \]

(32)

To study the composition \(T \circ (n \times S_K) \) we consider the action of this operator on the individual gradient, rotational and harmonic vector fields that make up the Helmholtz decomposition of an arbitrary vector field.

An argument based on integration by parts tells us that the action of the operator \(n \times S_K \) on gradient fields can be expressed in the form

\[
(n \times S_K)(\nabla \phi)(y) = -\nabla^T \int_{\Gamma} G_K(y - z) \phi(z) \, d\sigma(z) + n(y) \times \int_{\Gamma} \frac{\partial G_K(y - z)}{\partial n(z)} n(z) \phi(z) \, d\sigma(z). \tag{33}
\]

(To establish (33), integrate by parts the left hand side of this equation and express the surface gradient of \(G \) as a three-dimensional gradient minus the normal derivative times the normal. We thus obtain

\[
n(y) \times \int_{\Gamma} \nabla^y G_K(y - z) \phi(z) \, d\sigma(z) + \int_{\Gamma} \frac{\partial G_K(y - z)}{\partial n(z)} n(z) \phi(z) \, d\sigma(z)\]

which can easily be seen to equal the right-hand side of (33).) We can recast the identity (33) in the form

\[
(n \times S_K) \circ \Pi_{\nabla^T} = -\nabla^T S_K \Delta^{-1}_{\Gamma} \text{div}_\Gamma + S_2 \Delta^{-1}_{\Gamma} \text{div}_\Gamma, \tag{34}
\]

where \(S_2 \) is the second operator on the right-hand side of equation (33). The kernel of the operator \(S_2 \) equals the kernel of the double layer potential, and, thus, \(S_2 \) is a smoothing operator (it maps \(H^s \) into \(H^{s+1} \) [25, 28]). Hence, \(S_2 \Delta^{-1}_{\Gamma} \text{div}_\Gamma \) maps \(H^{m-\frac{3}{2}}_{\text{div}}(\Gamma) \rightarrow H^{m+\frac{3}{2}}_{\text{div}}(TM(\Gamma)) \) since another two orders of regularity are gained from the operator \(\Delta^{-1}_{\Gamma} \text{div}_\Gamma \) (note that \(\phi \in H^{m+3/2}(\Gamma) \) for \(a \in H^{m-1/2}_{\text{div}}(\Gamma) \)). Substituting (34) on the right hand side of (6) and taking into account the identity \(\text{div}_\Gamma \nabla \Pi_{\nabla^T} = 0 \) together with equations (31) and (32), we see that the operator

\[
[T \circ (n \times S_K)] \circ \Pi_{\nabla^T} \equiv S_3 = ik(n \times S_k) \circ (n \times S_K) \circ \Pi_{\nabla^T} + \frac{i}{k} T_{11} \text{div}_\Gamma (S_2 \Delta^{-1}_{\Gamma} \text{div}_\Gamma) \tag{35}
\]

is a continuous operator \(S_3 : H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \rightarrow H^{m+\frac{3}{2}}_{\text{div}}(TM(\Gamma)) \), and thus is compact from \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \) into itself.

We now study, in turn, the action of the composition \(T \circ (n \times S_K) \) on rotational vector fields. To do this, we first note that

\[
n \times S_K = n \times S_k + S_4 \tag{36}
\]

where, on account of the Taylor expansion of the \(G_K - G_k \) [28], the operator \(S_4 \) is regularizing by two orders, that is, \(S_4 \) is a continuous operator \(S_4 : H^s(TM(\Gamma)) \rightarrow H^{s+2}(TM(\Gamma)) \). Since \((n \times S_k)(\nabla^T \psi) = 1/iK \, \text{div} \circ \nabla \Pi_{\nabla^T} \psi \) \((\text{div} \circ \nabla \Pi_{\nabla^T} = 0) \) we obtain the relation complementary to (35):

\[
[T \circ (n \times S_K)] \circ \Pi_{\nabla^T} = \frac{1}{iK} [T \circ \nabla^T] \circ \Pi_{\nabla^T} + S_5, \tag{37}
\]
where \(S_5 = -T(S_4 \Delta^{-1} \text{curl}) : H^s(TM(\Gamma)) \rightarrow H^{s+2}(TM(\Gamma)) \) is a continuous operator, and, hence, compact from \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \) into itself. Using Calderón’s identities (19) and the fact that for smooth \(\Gamma \) the magnetic field operator \(\mathcal{K} \) is compact from \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \) to itself, we obtain from (37)

\[
[T \circ (n \times S_K)] \circ \Pi_{\text{curl}} = \frac{i}{4k} \Pi_{\text{curl}} + S_6
\]

where \(S_6 \) is compact from \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \) to itself.

Finally, we study the action of the operator \(T \circ (n \times S_K) \) on harmonic vector fields, see Remark 3.2. Since such vector fields are divergence free, the argument leading to (38) applies in this case as well, and we thus obtain

\[
[T \circ (n \times S_K)] \circ \Pi_{\text{curl}} = \frac{i}{4k} \Pi_{\text{curl}} + S_7,
\]

where \(\Pi_{\text{curl}} \) denotes the projection onto the space of harmonic vector fields and \(S_7 \) is a compact operator from \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \) to itself.

Equations (35), (38) and (39) tell us that, up to compact operators, the composition \(T \circ (n \times S_K) \) equals \(i/(4k) \) times the sum of the projections onto the spaces of surface rotationals and harmonic vector fields. Since \(\mathcal{K} : H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \rightarrow H^{m+\frac{1}{2}}_{\text{div}}(\Gamma) \) is a compact operator from \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \) to itself, we obtain the claimed relation (30).

Having established that the operator underlying the formulation (17) equals the sum of an invertible operator and a compact operator in the space \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \), we will prove next that the choice \(K = ik_1 \), \(k_1 \geq 0 \), renders the operators in (17) injective and thus invertible as a result of the Fredholm alternative; this will conclude the proof of the Theorem. To establish injectivity, let \(a \) be a solution of equation (17) with \(\mathbf{E}' = 0 \). It follows that the electromagnetic field \((\mathbf{E}^s, \mathbf{H}^s) \) defined by (15)-(16) is an outgoing solution to the Maxwell equations in the unbounded domain \(\mathbb{R}^3 \setminus D \) whose boundary values \(\mathbf{E}_+^s \) on \(\Gamma \) satisfy the homogeneous conditions \(n \times \mathbf{E}_+^s = 0 \). In view of the uniqueness of radiating solutions for exterior Maxwell problems [16] we obtain \(\mathbf{E}^s = \mathbf{H}^s = 0 \) identically in \(\mathbb{R}^3 \setminus D \). The standard jump relations of vector layer potentials then show that the limiting values of the electric field defined by (15)-(16) as \(x \) approaches \(\Gamma \) from the interior of \(D \) satisfy the relations

\[-n \times \mathbf{E}^s_+ = a, \quad -n \times \text{curl} \mathbf{E}^s_+ = i\xi k^2 n \times S_K a, \quad \text{on} \ \Gamma.\]

Taking the scalar product of the second of these relations with the conjugate of the first one, using standard vector relations, integrating over \(\Gamma \) and appealing to the divergence theorem gives

\[
i\xi k^2 \int_{\Gamma} (S_K a) \cdot \bar{a} \, d\sigma = \int_{\Gamma} n \times \bar{\mathbf{E}}^s_+ \cdot \text{curl} \mathbf{E}^s_+ \, d\sigma = \int_D \{ |\text{curl} \mathbf{E}^s|^2 - k^2 |\mathbf{E}^s|^2 \} \, d\mathbf{x}. \quad (40)
\]

Thus, denoting \(\{S_K a, a\} = \int_{\Gamma} (S_K a) \cdot \bar{a} \, d\sigma \), if \(S_K \) satisfies the coercivity property

\[\{S_K a, a\} \geq 0, \quad \text{and} \quad \{S_K a, a\} = 0 \quad \text{iff} \quad a = 0\]

then equation (40) implies that \(a = 0 \) and the operator integral operator in equation (17) is injective. For a general surface \(\Gamma \) the coercivity property is satisfied for wavenumbers \(K = ik_1 \) [28, p. 269] in \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \) as the acoustic single-layer operators \(S_{ik_1} \) are coercive on \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \).

We now turn to the proof of existence and uniqueness of solution for equation (18); the proof is based on duality arguments.
Theorem 3.4 Let \(R = S_K \). Then the operator on the left-hand side of equation (18) satisfies

\[
\frac{1}{2} I - K + \xi k(n \times S_K) \circ T \sim \left(\frac{1}{2} + \frac{i\xi}{4} \right) \Pi \nabla \Gamma + \frac{1}{2} \Pi \text{curl}_\Gamma + \left(\frac{1}{2} + \frac{i\xi}{4} \right) \Pi \nabla \Gamma \text{curl}_\Gamma.
\] (41)

Further, for \(K = ik_1 \), \(k_1 \geq 0 \), and \(\xi > 0 \), equation (18) admits one and only one solution in the space \(H^{m-\frac{1}{2}}_{\text{div}}(\Gamma) \) for any integer \(m \geq 0 \).

Proof. We use the duality relations [17, p. 171]

\[
\{ Ku, v \} = \{ u, n \times K(n \times v) \}
\]

\[
\{ T(n \times u), v \} = \{ u, T(n \times v) \}
\] (42)

of the operators \(K \) and \(T \) with respect to the bilinear form \(\{ u, v \} = \int_\Gamma u \cdot \bar{v} d\sigma \). Using the fact that \(S_K = S_{ik_1} \) is self-adjoint with respect to the bilinear form \(\{ \cdot, \cdot \} \), we obtain as an immediate consequence of the previous formulas that

\[
\{ T(n \times S_K u), v \} = -\{ u, n \times [(n \times S_K) \circ T](n \times v) \}.
\] (43)

which leads to

\[
\text{DCFIE-R}_K = -n \times [(\text{ICFIE-R}_K)^*(n \times \cdot)]
\] (44)

Clearly, (44) and (30) give (41). Finally, the invertibility of DCFIE-R\(_K\) follows from (44) and the invertibility of ICFIE-R\(_K\). \(\blacksquare\)

3.2 Choice of parameters

Our selection of values of \(K \) and \(\xi \) resulted from consideration of a wide range of numerical examples. More specifically, a wide range of numerical experiments suggest that the parameter values

\[
K = ik/2, \quad \xi = 1
\] (45)

yield excellent rates of convergence for the Krylov subspace solvers. In particular, through consideration of a variety of numerical tests we have found such parameter values lead to significant reductions in iteration numbers over those required by the un-regularized equations as well as equations obtained from previous preconditioning strategies.

The corresponding choice of the coupling parameter \(\eta \) in the definition of the classical CFIE (14) was discussed in [26]. There it was established that

\[
\eta = \frac{1}{k}
\] (46)

yields the lowest condition number for the continuous integral operator in the case of the unit sphere; we used this value of \(\eta \) to obtain all of the CFIE numerical results presented in this paper.

Remark 3.5 Experiments indicate that the parameter \(\eta \) does not have a dramatic impact either on the spectral properties of the CFIE, or on the numbers of iterations required in a GMRES solution of this integral equation. On the other hand, since the eigenvalues of the integral operators (21) and (22) cluster around points in the complex plane away from zero and infinity, the choice of the corresponding parameters \(K \) and \(\xi \) greatly influence the spectral properties of these operators, and, consequently, the numbers of iterations required for solution of the corresponding discrete versions.

Having completed our introduction of regularizing operators we now present a high-order numerical method for the solution of the resulting regularized integral equation (17).
4 Numerical Implementation: a Nyström approach

In order to avoid the exceedingly costly evaluation of the kernels of the composite operators in equations (17) and (18), our implementation obtains the composition of the operators through subsequent application of high-order-accurate discretized versions of the operators \(T \) and \(R \). In what follows we detail our methodology for evaluation of the action of such discrete operators on a given vector; the overall solution is ultimately obtained by means of the iterative solver GMRES [36].

Our strategy for evaluation of the relevant discrete integro-differential operators relies on use of local coordinate charts together with fixed and floating partitions of unity (POU), as proposed in [10] for the related problem of soft acoustic scattering. The present context requires certain reformulations of the operators introduced in the previous sections, as well as significant extensions of methods [10] to allow for differentiations of first and second order of the integral equation unknowns, as discussed in what follows.

Integral operators. We express both the magnetic integral operator \(K \) and the electric integral operator \(T \) in terms of integrals that only involve weakly singular kernels. The procedure is rather direct for the operator \(K \): since \(a \) is a tangential vector field, simple manipulations on equation (5) lead to the expression

\[
(Ka)(x) = \int_{\Gamma} \left((n(x) - n(y)) \cdot a(y) \nabla y G_k(x - y) + \frac{\partial G_k(x - y)}{\partial n(x)} a(y) \right) d\sigma(y),
\]

which, in view of the smoothness of the surface \(\Gamma \), only involves weakly singular kernels. The operator \(T \) can be treated similarly. Using integration by parts [28] on the second term in equation (6) and second-order derivatives of \(a \), the operator \(T \) can be recast in a form that involves only weakly singular kernels:

\[
(Ta)(x) = ik n(x) \times \int_{\Gamma} G_k(x - y) a(y) d\sigma(y)
- \frac{i}{k} \int_{\Gamma} (n(y) - n(x)) \times \nabla x G_k(x - y) \text{div}_\Gamma a(y) d\sigma(y)
- \frac{i}{k} \int_{\Gamma} G_k(x - y) \text{curl}_\Gamma \text{div}_\Gamma a(y) d\sigma(y)
= ik(n \times S_k a - \frac{1}{k^2} T_1 a).
\]

Surface representation and discretization. Briefly, the smooth bounded manifold \(\Gamma \) is covered by a number of overlapping coordinate patches \(P^\ell, \ell = 1, \cdots, L \) of appropriate sizes, where each patch \(P^\ell \), which is an open set in \(\Gamma \), is the image of a planar coordinate open set \(H^\ell \) via the local-coordinate regular parametrization

\[
x^\ell = x^\ell(u^\ell, v^\ell) \text{ for } (u^\ell, v^\ell) \in H^\ell, \ell = 1, \cdots, L.
\]

Together with the coordinate patches that cover the manifold \(\Gamma \) a subordinate partition of unity \(\{w^\ell(x), \ell = 1, \cdots, L\} \) is used, with the usual properties: each \(w^\ell \) is smooth, nonnegative, compactly supported in \(P^\ell \), and \(\sum_{\ell=1}^L w^\ell = 1 \) throughout \(\Gamma \).

The discretization of the densities \(a^\ell(u^\ell, v^\ell) \) for \(\ell = 1, \cdots, L \) is obtained by means of an equidistant Cartesian sets of nodes \((u_{n}^\ell, v_{m}^\ell)\) within \(H^\ell \) and corresponding nodal values \(a_{n,m}^\ell \).
Differentiation and integration. The fixed POU mentioned above can be used to reduce the evaluation of the surface integrals defining the operators \(\mathcal{K} \) and \(\mathcal{T} \) to planar integrals over the sets \(\mathcal{H}^\ell \). The resulting integrands involve products of various weakly-singular kernels, Jacobian determinants \(J^\ell \), the POU functions \(u^\ell \) and either the unknown density \(a \) or its derivatives of first or second order—which arise in the \((u^\ell,v^\ell)\) coordinate expressions [21] of the differential operators \(\nabla_G \) and \(\text{div}_G \). Thus, each one of the integral operators \(\mathcal{L} \) we need to consider \((\mathcal{L} = \mathcal{K}, \mathcal{L} = \mathcal{T} \) and \(\mathcal{L} = \mathcal{R}_K \)) can be expressed as a sums of integrals of the form

\[
(\mathcal{L}a)(x) = \sum_{\ell=1}^L \int_{\mathcal{H}^\ell} G(k,x,x^\ell(u^\ell,v^\ell),n^\ell(u^\ell,v^\ell))w^\ell(x(u^\ell,v^\ell))J^\ell(u^\ell,v^\ell)
\]

\[
\cdot \sum_{0\leq\alpha+\beta\leq2} c_{\alpha\beta}(u^\ell,v^\ell)\partial_u^\alpha \partial_v^\beta a^\ell(u^\ell,v^\ell) du^\ell dv^\ell,
\]

where \(c_{\alpha\beta} \) are coefficients arising from the coordinate forms of the differential operators mentioned above.

Since the products \(W^\ell(u^\ell,v^\ell) = w^\ell(u^\ell,v^\ell)J^\ell(u^\ell,v^\ell) \) vanish to high order at the boundary of the integration domain \(\mathcal{H}^\ell \), they can be extended by periodicity to smooth periodic functions defined in the whole plane—thus fitting the high-order trapezoidal-rule-integration and Fourier-series-interpolation paradigm [10]. As shown in what follows, further, this setup can be used to enable high-order evaluation of derivatives of the smooth but generally non-periodic densities \(a^\ell \).

Indeed, for the first order derivatives with respect to \(u^\ell \) we can write

\[
W^\ell(u^\ell,v^\ell)\partial_u a^\ell(u^\ell,v^\ell) = W^\ell(u^\ell,v^\ell)^{1-\delta}\{\partial_u[W^\ell(u^\ell,v^\ell)^{\delta} a^\ell(u^\ell,v^\ell)] - a^\ell(u^\ell,v^\ell)\partial_u(W^\ell(u^\ell,v^\ell)^{\delta})\},
\]

for an arbitrary \(0 < \delta \leq 1 \), with a similar formula for the \(v^\ell \) derivatives. The second order derivatives can be obtained using this procedure twice, using each time a power \(\delta = \frac{1}{4} \); we found in practice that the value \(\delta = \frac{1}{4} \) yields a perfectly adequate performance. In formulas (50) the differentiation operators act on smooth and periodic functions, so that the corresponding derivatives can be obtained through differentiation of the corresponding Fourier series. For efficiency it is imperative to use FFTs for evaluation of Fourier series; further, it is preferable to utilize POUs with small derivatives: this can be arranged by allowing for substantial overlap amongst the patches \(\mathcal{P}^\ell \).

With these preliminaries, the high-order quadrature rule we use for the numerical evaluation of the integrals in equation (49) is to a large extent identical to the one introduced in [10]. A somewhat significant difference arises in connection with the use of imaginary wave numbers \(K = ik_1 \) in the regularizing operator \(S_K \). Indeed, for real wavenumbers \(k \), the fundamental solution contains the oscillatory factor \(e^{ik|\mathbf{R}|} \), whereas for the imaginary wavenumber \(ik_1 \) the corresponding factor is a decaying exponential \(e^{-k_1|\mathbf{R}|} \). A cursory analysis of equations (11) in [10] and the corresponding formulae involving decaying exponentials reveals the trapezoidal/polar approach of [10] does not yield high-order accuracy for the decaying exponential integrands under consideration. To see this, let \(s = |\mathbf{R}(\rho,\theta)| \) for a fixed \(\theta \) (a radius in the polar integration technique of [10]). Clearly, the functions \(\cos ks \) and \(\sin ks/s \) are smooth (analytic) functions for all real values of \(\rho \), including \(\rho = 0 \), while the function \(e^{-k_1s} \) is not a smooth function of \(\rho \) at \(\rho = 0 \). Thus, while the terms arising in the real wavenumber case \(K = k \) can be treated with high-order accuracy by means of a combination of a two-dimensional Cartesian trapezoidal rule (for terms such as \(\cos ks \)) and a two-dimensional polar trapezoidal rule (for terms such as \(\sin ks/s \)), the integral of \(e^{-k_1|\mathbf{R}|} \) cannot be evaluated with high-order accuracy by either of these approaches.
To address this difficulty we re-express the integral under consideration
\[
\tilde{L}_1(u,v,\theta) = \int_{-r_1}^{r_1} f_\ell^*(\rho,\theta) \frac{|\rho|}{|R|} e^{-k_1|R|} d\rho.
\]
(51)
as the sum of the integrals
\[
\tilde{L}_1(u,v,\theta) = \int_{-r_1}^{0} f_\ell^*(\rho,\theta) \frac{|\rho|}{|R|} e^{-k_1|R|} d\rho + \int_{0}^{r_1} f_\ell^*(\rho,\theta) \frac{|\rho|}{|R|} e^{-k_1|R|} d\rho,
\]
each one of which can be evaluated by means of a suitable one-dimensional high-order integration
method—which we take to be the composite Newton-Cotes method of order seven. This particular
choice is motivated by several considerations: 1) Seven is the highest order for which the Newton-
Cotes with evenly spaced data method contains only positive weights, and thus avoids instabilities
associated with the Runge phenomenon; 2) The order-seven Newton-Cotes formulae provides stable
quadrature of a rather high order with a cost comparable to the trapezoidal quadrature; and 3)
This method can be implemented as long as the single additional value of the unknown density at
the target point \(R = 0 \) is available (as it is for all the required polar-coordinate integrations in the
approach [10]), besides the values of the density at evenly spaced points in the interval \([-r_1, r_1]\)
required by the trapezoidal quadrature.

It must be noted that, for a given angle \(\theta = \theta_i \), the target point \(R = 0 \) can be arbitrarily
positioned within the radial interval \([-r_1, r_1]\), and, thus, special consideration must be given to
design a Newton-Cotes method on the unevenly spaced data points that start or end at \(r = 0 \). In
detail, if \(r_1^{(0)}, \ldots, r_1^{(P)} \) is an evenly spaced discretization of the radial interval \([-r_1, r_1]\) such
that the target-point \(r = 0 \) lies in the open interval \((r_1^{(p)}, r_1^{(p+1)}), \; 0 \leq p \leq P - 1 \), the values of the
integrand \(f_\ell^*(\rho,\theta) \) at the points \(r_1^{(p)} \) and \(r_1^{(p+1)} \) will be used in the Newton Cotes formulas only if,
for a suitably chosen value of the tolerance \(\varepsilon_{\text{tol}} \), the relations
\[
\frac{|r_1^{(p)}|}{r_1^{(1)} - r_1^{(0)}} \geq \varepsilon_{\text{tol}} \quad \text{and} \quad \frac{r_1^{(p+1)}}{r_1^{(1)} - r_1^{(0)}} \geq \varepsilon_{\text{tol}}
\]
(52)
are satisfied. This precaution must be taken in order to eliminate very large Newton-Cotes weights
and associated ill-conditioning that arise as the target point \(r = 0 \) is too close to one of the endpoints
of the radial interval that contains it. In the case that one or both of the constraint (52) fails to
be satisfied, the corresponding endpoint(s) is (are) skipped in the application of the Newton-Cotes
method. The value of the parameter \(\varepsilon_{\text{tol}} \) must be tuned to the geometry and discretization, and
was taken to equal 0.01 for all of the numerical examples shown in the following section.

Remark 4.1 We note that, in principle, other high-order quadrature rules such as the Chebyshev
or Gauss methods could be used in order to accurately evaluate integrals of the type (51). However,
these alternatives would require interpolations along each radial lines in order to produce the values
of the densities at the radial Chebyshev and Gauss points in addition to those already used to
produce those values at evenly spaced radial points. We have found that, for accuracies of up
to several digits, the Newton-Cotes approach is perfectly adequate: it achieves accuracy levels up
to similar to those resulting from the Chebyshev and Gauss quadratures with a significantly more
favorable overall computational cost, and hence this is our method of choice.
5 Numerical Results

In what follows we present a variety of numerical results for the various types of Combined Field Integral Equations under consideration, namely the un-regularized direct and indirect equations (11) and (14), the corresponding regularized equations ICFIE-R_K and DCFIE-R_K (that is, equations (17) and (18) with regularizing operators R = S_K given by (20), and with values of the parameters K and ξ selected as detailed in Section 3.2) and the Calderón regularized CFIE introduced in reference [20], which in the remainder of this paper will be denoted by CFIE_[20]. Solutions of the linear systems arising from the discretization of these equations were obtained by means of the iterative solver GMRES [36]; the results of this section demonstrate the significant reductions in the numbers of iterations that result from use of the regularizers introduced in this text. The numerical results presented in this section were obtained by prescribing a GMRES residual tolerance equal to 10^{−14}; the reference solutions for the scattering experiments with plane-wave incidences, in turn, resulted from finer-mesh discretizations and GMRES residual tolerances equal to 10^{−6}.

We present results for four scattering surfaces: a sphere of radius one, an elongated ellipsoid (of principal axes 2, 0.75 and 1), and a bean-shaped body, and we consider scattering problems involving the wavenumbers k = 8, 16 and 32; for all the geometries, these wavenumbers correspond to scatterers of 2.5λ, 5.1λ and 10.2λ in diameter, respectively. The bean shaped geometry mentioned above is described in [10]; it is given by the equation

\[
x^2\left(a^2(1 - \alpha_3 \cos \frac{\pi x}{R})\right) + \frac{(\alpha_1 R \cos \frac{\pi y}{R})^2}{b^2(1 - \alpha_2 \cos \frac{\pi z}{R})} + \frac{z^2}{c^2} = R^2,
\]

with \(a = 0.8, b = 0.8, c = 1, \alpha_1 = 0.3, \alpha_2 = 0.4, \alpha_3 = 0.1, \) and \(R = 1\). For efficiency, configurations requiring larger numbers of unknowns than those we considered in this text should be dealt with by means of adequate acceleration techniques (e.g. [10]); such cases lie beyond the scope of this paper and will be considered in our forthcoming work [12].

With exception of the bean-shaped geometry, in all cases we assumed an incident field in the form of a plane wave propagating down the z axis with polarization (1, 0, 0). For the bean-shaped scatterer, in contrast, we assumed the polarization (0, \(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\)) and, in order for the configuration to give rise to multiple reflections, a direction of incidence \((-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3})\).

For every scattering experiment we present the maximum error amongst all directions \(\hat{x} = \frac{x}{|x|}\) of the far field \(E_\infty(\hat{x})\):

\[
E(x) = e^{ik|x|} \left(E_\infty(\hat{x}) + O\left(\frac{1}{|x|}\right) \right) \quad \text{as} \quad |x| \to \infty.
\]

The maximum far-field error, which we denote by \(\varepsilon_\infty\),

\[
\varepsilon_\infty = \max_{\hat{x}} |E^{\text{calc}}_\infty(\hat{x}) - E^{\text{ref}}_\infty(\hat{x})|,
\]

was evaluated in our numerical examples as the maximum difference (over a uniform discretization of the unit sphere \(|\hat{x}| = 1\), containing 5766 points corresponding to 6 patches and 32 × 32 points per patch) between far fields \(E^{\text{calc}}_\infty\) obtained from our numerical solutions and corresponding far fields \(E^{\text{ref}}_\infty\) associated with reference solutions. The reference solutions we used were obtained from the exact Mie expression in the case of the spherical scatterers, and from finer-mesh solutions for other geometries. To obtain the latter reference solutions we used the ICFIE – R₀ using fine
Table 1: Convergence study. Scattering from a sphere of radius equal to 2.7\(\lambda\), using the ICFIE-R\(_K\) formulation (21) with \(K = 0\)

<table>
<thead>
<tr>
<th>Patches</th>
<th>Unknowns</th>
<th>Discretization density</th>
<th>(\epsilon_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (\times) 17 (\times) 17</td>
<td>2700</td>
<td>3 per (\lambda)</td>
<td>(1.8 \times 10^{-2})</td>
</tr>
<tr>
<td>6 (\times) 33 (\times) 33</td>
<td>11532</td>
<td>6 per (\lambda)</td>
<td>(7.9 \times 10^{-4})</td>
</tr>
<tr>
<td>6 (\times) 65 (\times) 65</td>
<td>47628</td>
<td>12 per (\lambda)</td>
<td>(4.1 \times 10^{-5})</td>
</tr>
<tr>
<td>6 (\times) 129 (\times) 129</td>
<td>193548</td>
<td>24 per (\lambda)</td>
<td>(5.4 \times 10^{-7})</td>
</tr>
</tbody>
</table>

Table 2: Scattering by spheres of 2.5\(\lambda\), 5.1\(\lambda\) and 10.2\(\lambda\) in diameter; solutions obtained using 8748, 36300 and 147852 unknowns, respectively, and a number “It.” of GMRES iterations. Residual tolerance = \(10^{-4}\).

<table>
<thead>
<tr>
<th>Size</th>
<th>ICFIE-R(_K)</th>
<th>DCFIE-R(_K)</th>
<th>CFIE([20])</th>
<th>CFIE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>It.</td>
<td>(\epsilon_\infty)</td>
<td>It.</td>
<td>(\epsilon_\infty)</td>
</tr>
<tr>
<td>2.5(\lambda)</td>
<td>11</td>
<td>8.2 (10^{-4})</td>
<td>11</td>
<td>7.0 (10^{-4})</td>
</tr>
<tr>
<td>5.1(\lambda)</td>
<td>12</td>
<td>4.6 (10^{-4})</td>
<td>12</td>
<td>1.2 (10^{-4})</td>
</tr>
<tr>
<td>10.2(\lambda)</td>
<td>14</td>
<td>2.9 (10^{-4})</td>
<td>14</td>
<td>2.8 (10^{-4})</td>
</tr>
</tbody>
</table>

Discretizations; specifically, 47628 unknowns were used for the fine-mesh solutions in the case of the ellipsoid and bean configurations of diameters 2.5\(\lambda\) and 5.1\(\lambda\) (corresponding to 6 patches and 64 \(\times\) 64 \((u, v)\) discretization points per patch), and 193548 unknowns (corresponding to 6 patches and 81 \(\times\) 81 points per patch) were used for the corresponding 10.2\(\lambda\) ellipsoid and bean configurations.

Besides iteration numbers and far field errors associated with each of the formulations considered, Tables 2 to 4 display the number of iterations required by the GMRES solver to reach a relative residual of \(10^{-4}\). For each one of the first three scattering surfaces (sphere, ellipsoid, bean) we used 8748, 36300 and 147852 unknowns for the scattering problems of diameters 2.5\(\lambda\), 5.1\(\lambda\) and 10.2\(\lambda\), respectively—corresponding to 6 patches and 28 \(\times\) 28, 56 \(\times\) 56 and 112 \(\times\) 112 discretization points per patch, respectively. Our numerical experiments indicate that the number of iterations and the accuracy of the implementation of the unpreconditioned ICFIE formulation (14) are virtually identical to those produced through the implementation of the unpreconditioned CFIE formulation (11); consequently, we present these results are presented in Tables 2 to 4 under the denomination CFIE.

We begin the presentation of numerical examples with an illustration of the high-order nature of our algorithm. To this end, we present in Table 1 the far-field error produced through increasingly refined discretizations of a sphere of radius 2.7\(\lambda\) of the CFIE-R formulation (21) with \(K = 0\) for plane wave incidence. The electromagnetic size of the problem and the samplings are identical to those in Table IV in [10], except that twice the number of unknowns is needed for the two-dimensional surface density that occurs in the electromagnetic case. The maximum far-field errors in Table 1 results are qualitatively similar to those reported in Table IV [10] for the sound-soft case: doubling the number of unknowns consistently results in accuracy improvements of two order of magnitude. We used GMRES tolerances of \(10^{-4}\) for the first two discretizations, \(10^{-6}\) for the third and respectively \(10^{-8}\) for the third.

The various numerical results presented in this section support the main claims of this paper:
the new regularized integral equations give rise to significant reductions in the number of iterations required by the GMRES solver, and the high-order Nyström implementation we propose for their solution gives rise to highly accurate solutions: the overall accuracy of the solutions of the integral equation formulations ICFIE-R$_K$ and DCFIE-R$_K$ is comparable to (or better than) the error corresponding to ICFIE or CFIE. Since the computational time required by a matrix-vector product for the discrete regularized equations is approximately 1.6 times that required by the classical CFIE for the same discretization, the gains in run times resulting from the new regularized equations are very significant. These improvement levels contrast with those obtained from the method [20], which, using of the regularizing operator T, requires relative computational time of the order 2.5 times that required by ICFIE or CFIE, in addition to requiring significantly larger Krylov iteration numbers.

The method introduced in [20] uses $n \times \mathcal{R} = T(ik)$ as preconditioner: the equation resulting from that work is

$$\frac{1}{2} - \mathbf{KJ} + ik^2 T(ik) \circ T(k) \mathbf{J} = n \times \mathbf{H}^i - ik^2 T(ik) (n \times \mathbf{E}^i).$$

(55)

The numerical examples proposed in [20] focus on the very-low-frequency end of the spectrum; no information was provided in that contribution with regards to the performance of equation (55) in the intermediate or high-frequency regime. We thus undertook the task of implementing and testing these formulations; our findings in these regards are reflected in the columns labeled CFIE$_{[20]}$ in Tables 2 to 4. Two remarks are in order in these regards. On one hand we report that, as pointed out in [20], in order to produce an adequate implementation of equation (55) it is necessary to account explicitly for the fact that the composition of the operators $T_1(k)$ and $T_1(ik)$ is zero. We have found that a failure to do so results in iteration numbers that are up to four times larger than the CFIE$_{[20]}$ numbers reported in the Tables 2 to 4. On the other hand, even after such

<table>
<thead>
<tr>
<th>Size</th>
<th>ICFIE-R$_K$</th>
<th>DCFIE-R$_K$</th>
<th>CFIE$_{[20]}$</th>
<th>CFIE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>It.</td>
<td>ε_∞</td>
<td>It.</td>
<td>ε_∞</td>
</tr>
<tr>
<td>2.5λ</td>
<td>13</td>
<td>$4.1 \cdot 10^{-4}$</td>
<td>12</td>
<td>$3.6 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>5.1λ</td>
<td>12</td>
<td>$1.3 \cdot 10^{-4}$</td>
<td>12</td>
<td>$9.5 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>10.2λ</td>
<td>13</td>
<td>$1.2 \cdot 10^{-4}$</td>
<td>13</td>
<td>$1.0 \cdot 10^{-4}$</td>
</tr>
</tbody>
</table>

Table 3: Scattering by ellipsoids of 2.5λ, 5.1λ and 10.2λ in diameter; solutions obtained using 8748, 36300 and 147852 unknowns, respectively, and a number “It.” of GMRES iterations. Residual tolerance = 10^{-4}.

<table>
<thead>
<tr>
<th>Size</th>
<th>ICFIE-R$_K$</th>
<th>DCFIE-R$_K$</th>
<th>CFIE$_{[20]}$</th>
<th>CFIE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>It.</td>
<td>ε_∞</td>
<td>It.</td>
<td>ε_∞</td>
</tr>
<tr>
<td>2.5λ</td>
<td>13</td>
<td>$8.5 \cdot 10^{-4}$</td>
<td>12</td>
<td>$9.2 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>5.1λ</td>
<td>12</td>
<td>$1.6 \cdot 10^{-4}$</td>
<td>12</td>
<td>$1.4 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>10.2λ</td>
<td>14</td>
<td>$1.6 \cdot 10^{-4}$</td>
<td>14</td>
<td>$1.6 \cdot 10^{-4}$</td>
</tr>
</tbody>
</table>

Table 4: Scattering by bean-shaped surfaces of 2.5λ, 5.1λ and 10.2λ in diameter; solutions obtained using 8748, 36300 and 147852 unknowns, respectively, and a number “It.” of GMRES iterations. Residual tolerance = 10^{-4}.
Table 5: Comparisons. Scattering from objects of diameter equal to 5.4λ, point source inside, using the ICFIE formulation (12) with coupling parameter $\eta = 1/k$, the ICFIE – R_K formulation (21) with $K = k/2$ and $\xi = 1$ and the ICFIE-R formulation (55) introduced in [20].

explicit cancellations, approximately two orders of magnitude lower accuracies than those provided by the other equations considered in this section resulted from our high-order implementation of this approach.)

We present in Table 5 a suggestive comparison between the performance of the ICFIE formulation (12) and the ICFIE-R formulations (21) and (55). We chose three geometrical configurations, namely a unit sphere, the elongated ellipsoid and the bean-shaped geometry, all of diameter equal to 5.4λ and two discretization consisting of 10800 discretization points ($2 \times 6 \times 31 \times 31$) and 37632 discretization points respectively ($2 \times 6 \times 56 \times 56$). The incidence was taken to be an electric point source inside located at distance 0.2 from the origin and 10^6 off the vertical axis; the GMRES solver was ran to a 10^{-4} residual. Table 5 shows the total computational time and the number of iterations required for each individual numerical experiment. The far-field errors incurred by the three versions were comparable, i.e. of order 10^{-3} for the coarser discretizations and of order 10^{-4} for the finer discretizations respectively. Once again we note that the method (55) entails a loss of accuracy of up to two orders of magnitude. The computational times reported resulted from a C++ numerical implementation of our algorithm as described in the previous Sections, and runs on a desktop machine with a single Intel (R) Xeon processor at 2.33 GHz with 2 GB RAM, running GNU/Linux using the GNU/gcc compiler, the PETSC 3.0 library for the fully complex implementation of GMRES, and the FFTW3 library to perform FFTs. We remark that the computational times of one matrix-vector product for the cases of the sphere and the ellipsoid are almost identical as the same parametrization was used for these two types of geometries. The slightly larger computational times for the bean-shaped geometries results from the use of larger overlap between the patches in the atlas chart; the larger overlap is necessary for achieving the same level of accuracy as the sphere and the ellipsoid.

Two main observations can be drawn from the results presented in Table 5: (1) a matrix-vector product resulted from discretization of the formulations (21) is on average at most 1.6 more computationally expensive than the matrix-vector product for the CFIE formulation (12) at the same level of discretization; and (2) a matrix-vector product resulted from discretization of the formulations (55) is on average at most 2.5 more computationally expensive than the matrix-vector product for the CFIE formulation (12) at the same level of discretization but with up to two orders of magnitude loss of accuracy and significantly larger iteration numbers. We also mention that in the same computational architecture, the computational cost of one matrix-vector product of the CFIE formulation (12) is only two times more expensive than the cost of one matrix-vector product for the combined field formulation for acoustic Dirichlet problem using the algorithm introduced in [10].
Figure 1: Numbers of iterations to 10^{-4} GMRES residuals for the ICFIE-R_K formulations (21) with $\xi = 1$ and $K = k/2$, for three geometries: unit sphere, ellipsoid and bean-shaped geometry. Point-source and plane-wave incident fields were used in the left and right figures, respectively. For the left figure the far field error was computed through comparison with the exact solution, and found to be of the order of 10^{-4}. The figures display the iteration numbers for the sequence of 320 wavenumbers $k = 0.1, 0.2, \cdot \cdot \cdot, 32$ and corresponding discretizations that deliver far-field errors of order 10^{-4}. Clearly, the unique solvability established in Theorems 3.3 and 3.4 is realized in practice: no resonant frequencies were found.

To demonstrate the stability our ICFIE-R_K formulation (21) as the frequencies are varied, in Figure 1 we display the number of iterations required to reach a GMRES residual of 10^{-4} using the ICFIE-R_K formulation (21) with $K = k/2$ and $\xi = 1$: the left and right portions of this figure present results corresponding, respectively, to two different types of incident fields, namely, point-source incidence of the kind used in Table 5, and plane-wave incidence of the type used in Tables 2 to 4. For each geometrical configuration and incidence type we present results for 320 wavenumbers k ranging from 0.1 to 32 spaced 0.1 apart. We used discretizations of the same type with those throughout this section so that 4 digits were obtained in the far-field when compared with the exact solutions for point-source incidences or with refined discretizations for plane wave incidences.

The results of this section show that the new regularized integral equations, and the associated implementation described in Section 4 are well conditioned, and can produce highly accurate solutions using very small numbers of iterations.

6 Conclusions

In this paper we have introduced novel classes Regularized Combined Field Integral Equations formulations for the solution of Maxwell equations. As discussed in the introduction, the equations and high-order implementations introduced in this text provide significant improvements in accuracy and computational cost over the most competitive (unaccelerated) approaches otherwise in existence today for the treatment of problems of electromagnetic scattering by perfectly conducting surfaces. In particular, we found that the Regularized Combined Field Integral Equations
ICFIE-R$_K$ and DCFIE-R$_K$ have excellent spectral properties, as evidenced by the reduced numbers of iteration required for convergence of the GMRES iterative solver. Use of the new equations in the simulation of electromagnetic scattering problems produces significant gains in overall computational times over those resulting by both the classical ICFIE and CFIE with no compromise in accuracy. Corresponding low-iteration-number, high-accuracy algorithms for treatment of large electromagnetic problems (based on a combination of the main elements introduced in this text with the equivalent-source acceleration techniques originally introduced in [10] in the acoustic scattering context) will be presented in the forthcoming contribution [12].

References

[34] Rokhlin, V., *Diagonal Form of Translation Operators for the Helmholtz equation in Three Dimensions*, *Applied and Computational Harmonic Analysis* 1, 82–93, 1993

